Equipment and Chemical Preparation
 Experiment 7: Synthesis of Soap (Saponification)

Experiment Summary

In this two week experiment, students will work in pairs to prepare soap. Soap will be prepared through saponification (ester hydrolysis) of triacylglycerols derived from vegetable shortening (i.e., Crisco). Reaction of triacylglycerols with sodium hydroxide in de-ionized water will promote saponification to generate the soap, which is a mixture of carboxylate salts of fatty acids and glycerol. Workup requires precipitation of the soap from cold saline solution. The soap product will be evaluated for hardness/softness, feel, and its ability to emulsify oils.

Chemicals, Supplies and Equipment

Each student pair will make approximately 10 g of soap.
For an individual student pair:

Chemicals \& Solutions	Equipment	
10 g vegetable shortening	100 ml Beaker	250 ml Vacuum flask w/vacuum hose
40 ml ethanol	250 ml round-bottomed flask (24/40 joint size)	Buchner funnel w/ filter paper
40 ml of $20 \% \mathrm{NaOH}$	Reflux condenser (24/40 joint size) w/ hoses	Large Powder funnel w/ filter paper
$150 \mathrm{ml} \mathrm{28} \mathrm{\%} \mathrm{NaCl}$	250 ml Heating mantle w/cord	400 ml beaker
$200 \mathrm{ml} \mathrm{de-ionized} \mathrm{water}$	Variac	100 ml beaker
$500 \mu \mathrm{l}$ soap scent	500 ml Erlenmeyer	2 Weigh boats
$2-3 \mathrm{ml} 1 \%$ Calcium chloride	$613 \times 100 \mathrm{~mm}$ Test tubes	
$2-3 \mathrm{ml} \mathrm{1} \mathrm{\%} \mathrm{Magnesium} \mathrm{chloride}$	Test tube rack	
$2-3 \mathrm{ml} \mathrm{1} \mathrm{\%} \mathrm{Ferric} \mathrm{Chloride}$		
$2-3 \mathrm{ml} \mathrm{Mineral} \mathrm{or} \mathrm{other} \mathrm{oil}$		
$3-5 \mathrm{ml} \mathrm{0.5} \mathrm{\%} \mathrm{detergent} \mathrm{solution}$		
$3-5 \mathrm{ml} \mathrm{9} \mathrm{\%} \mathrm{Sodium} \mathrm{phosphate} \mathrm{tribasic} \mathrm{solution}$		

Total Needed for ~160 students

Chemicals	Total Quantity	Prep
Vegetable Shortening	4 containers (1.36 kg size)	Separate into six containers of ~200g each
Ethanol	5 liters	61 liter bottles, One bottle at each bench.
25% NaOH in water	5 liters	61 liter bottles (Should be plastic not glass), one at each bench
28% NaCl	14 liters	61 liter bottles, one at each bench
De-ionized water	20 liters	Can be stored in a carboy in lab
1% Calcium chloride	600 ml	6100 ml bottles at each bench
1% Magnesium chloride	600 ml	6100 ml bottles at each bench
1% Ferric Chloride	600 ml	6100 ml bottles at each bench
Mineral or other oil	1 liter	6100 ml bottles at each bench
0.5% Detergent solution	2 liters	6100 ml bottles at each bench (dish detergent is fine)
9% Sodium phosphate tribasic	2 liters	6100 ml bottles at each bench

Equipment and Chemical Preparation Experiment 7: Synthesis of Soap (Saponification)

Equipment		
250ml 24/40 round bottomed flasks	$12+2$ extra for breakage	2 at each bench
$24 / 40$ reflux condensers w/ hoses	$12+2$ extra for breakage	2 at each bench
250 ml Heating mantles w/cords	$12+2$ in case of failure	These heating mantles are larger than what the students typically use. Two of these should be placed at each bench.
Variacs	12	Located in the student's common hood cabinet.
500 ml Erlenmeyer flasks	$12+2$ for breakage	2 at each bench
Powder Funnels (10cm diameter)	$12+2$	These large powder funnels should be provided, two at each bench. The ones typically used for other experiments are too small.
Large filter paper (15cm or greater)	12 boxes/packs of ten	One box/pack at each bench
250 ml Vacuum flask w/ vacuum hoses	$12+2$ for breakage	2 at each bench
Buchner Funnels (6cm diameter or larger) with adapters to fit 250 ml vacuum flasks	$12+2$	These should be in the student's filtration drawers. Adapters need to be provided to fit the 250 ml vacuum flask.
Filter paper (to fit Buchner funnels)	12 boxes of 20	One box at each bench
100 and 400 ml beakers	14 each	Students already have these in their lab drawers
Fragrances (total of $\sim 60 \mathrm{ml)}$	3 or 4 varieties, 12 bottles	Place one bottle at each bench
Weigh boats for soap molds ($8 \times 8 \mathrm{~cm}$)	200	Place ~ 20 at each bench

Instructions

1. Set up six reagent bins, one for each bench, containing each of the following items.

Chemical and Supplies Bins	
1 container of shortening	1 pack of 15cm filter paper
11 liter bottle of ethanol	1 bottle of fragrance
11 liter bottle of $25 \% \mathrm{NaOH}$	$\sim 20-30$ weigh boats
11 liter bottle of $28 \% \mathrm{NaCl}$	
1 box of 6 cm filter paper	

2. Set up six equipment bins, one for each bench, containing each of the following items.

	Equipment Bins	
2	250 ml rb flasks (24/40 joints)	2 Large Powder funnels
2	condensers w/ hoses (24/40 joints)	2 250ml Vacuum flasks w hoses
2	250 ml heating mantles w/ cords	2500 ml Erlenmeyer flasks

3. Check bins, solutions, chemicals, supplies throughout the week and refill as needed.
